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Abstract

In the present paper we study the thermo-viscoplastic coupling in clayey fault-gouges under shear. It is shown that

steady shear for a strain-rate hardening/thermally softening clay is only then possible, if the ambient temperature is less

than some well-defined critical value. Past this critical temperature the balance between the two antagonistic mecha-

nisms of viscous strengthening and thermal softening cannot be sustained and may result in dynamic (catastrophic)

shear deformation. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

All formulations of problems referring to deformation must observe the basic balance laws of continuum
mechanics. In most applications in Geomechanics we will resort mainly to mass balance and momentum
balance. However for the analysis of catastrophic events like landslides, mudflows, rapid fault shearing, etc.
we must include energy considerations as well (cf. Habib, 1967; Anderson, 1980; Voight and Faust, 1982;
Mase and Smith, 1985; Vardoulakis, 2000, 2002).

Although it is believed that balance laws have general validity, we should emphasize here that there are
many examples, which are indicating that the formulation of balance laws in continuous media include
implicitly important constitutive assumptions as well. In the present paper we will discuss, the energy
balance equation as this is formulated and applied to thermo-hydro-mechanically coupled deformations of
water-saturated porous materials like a clayey fault-gouge. The formulation of the energy balance equation
in that particular setting is neither an obvious nor a formal task. Here we attempt such a formulation by
postulating a unique temperature field for both constituents, namely the solid and the aqueous phases.

In the fluid mechanics literature a thermal run-away instability is known to set in, when in a steady shear
flow and at some critical ambient temperature the effect of strain-rate fails to counterbalance the effect of
temperature (Gruntfest, 1963). This mechanism becomes clear by recalling for example Newton’s law for
the shear stress in a fluid 1 accounting also for the temperature dependence of the fluid viscosity,
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s � gw0e
�Mh _cc ð1Þ

Thus past a critical temperature the imbalance between the two antagonistic mechanisms of viscous
strengthening and thermal softening results inevitably in an accelerating (catastrophic) shear deformation.

In the soil mechanics literature there is ample reference to the fact that clays are strain-rate sensitive
materials, the majority of which shows a strain-rate hardening behavior (Taylor, 1948; Sigh and Mitchell,
1968; Leinenkugel, 1976; Adachi and Oka, 1982). As a matter of fact clays are thermo-viscoplastic ma-
terials (Campanella and Michell, 1968; Nova, 1986; Hueckel and Baldi, 1990). As pointed out recently by
Modaressi and Laloui (1997), as early as in the mid 1970s Hicher (1974) and Despax (1976) reported that
some clays show thermoplastic softening behavior as far as their friction coefficient in the critical state is
concerned (see Fig. 1 after Laloui, 2001).

Thus the friction angle at critical state for some clays is practically unaffected by temperature whereas for
some other clays it is a decreasing function of temperature. These differences are attributed mainly to the
clay mineralogy, which presumably influences the thermo-mechanical behavior of a clay in decisive manner
(e.g. montmorillonite versus kaolinite).

Our analysis here applies to the poro-thermo-mechanical behavior of clayey fault gouges or to shear-
bands inside thick clayey deposits. We will show that thermal run-away instabilities are quite probable to
occur in clayey material as soon as the particular clay shows frictional strain-rate hardening and thermal
softening, and the ambient temperature exceeds a well-defined critical value.

2. Energy balance in porous, fluid-saturated soils

Let e ¼ eðxk; tÞ, P ðmÞ ¼ P ðmÞðxi; tÞ and Qk ¼ Qkðxi; tÞ be the specific internal energy the stress power of a
water-saturated clayey material and the heat flux vector in this medium at any point and time. The local
form of the energy balance of continuum mechanics reads as follows (cf. Vardoulakis and Sulem, 1995),

q
DðmÞe
Dt

¼ P ðmÞ � oQk

oxk

ð2Þ

where DðmÞ=Dt denotes the ‘‘barycentric’’ material derivative of the mixture

DðmÞ

Dt
¼ o

ot
þ vðmÞ

i
o

oxi
; vðmÞ

i ¼ qð1Þ

q
vð1Þi þ qð2Þ

q
vð2Þi ð3Þ

Fig. 1. The variation of the critical friction coefficient with temperature, after Laloui (2001).
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In Eq. (3) (second term) vðaÞi ðxk; tÞ are the partial velocities of the constituents. In these expressions the
superscript (1) denotes the solid phase, (2) the fluid phase and (m) the mixture. We recall that the partial
densities are expressed in terms of the porosity n of the soil, the density qs of the solids and the density qw of
the fluid (water)

qð1Þ ¼ ð1 � nÞqs; qð2Þ ¼ nqw ð4Þ
The total density of the ‘mixture’ is

q ¼ nqw þ ð1 � nÞqs ð5Þ
We remark that the concept of partial stresses of the theory of mixtures is not meaningful in soil mechanics
(Bishop and Skinner, 1977). Thus the total stress is decomposed, according to Tezaghi’s effective stress
principle, into an effective stress and into a pore-water pressure

rij ¼ r0
ij � pwdij ðpw > 0Þ ðCompression is taken negative:Þ ð6Þ

This means also that for the fluid phase we neglect viscosity. Moreover it is assumed that the effective stress
is dual-in-energy to the rate of deformation of the solid phase and that the pore-water pressure works on
the fluid volumetric strain-rate. Accordingly the stress power for the mixture is defined as

P ðmÞ � r0
ijD

ð1Þ
ij þ pwD

ð2Þ
kk ð7Þ

where

DðaÞ
ij ¼ 1

2

ovðaÞi

oxj

 
þ
ovðaÞj

oxi

!
ða ¼ 1; 2Þ ð8Þ

denote the rate of deformation tensors for each constituent.
Furthermore we assume that the fluid phase is thermo-elastic and that the solid phase is thermo-elasto-

visco-plastic. The last assumption is expressed by the decomposition of the rate of deformation of the solid
phase into a reversible (elastic) and into a irreversible (visco-plastic) part,

Dð1Þ
ij ¼ De

ij þ Dp
ij ð9Þ

In order to evaluate further the energy balance Eq. (2) we postulate a unique temperature field hðxi; tÞ for
both phases and we assume that the rate of internal specific energy of the mixture depends on changes in
temperature and on the rate of elastic deformation,

q
DðmÞe
Dt

� jðqCÞm

DðmÞh
Dt

þ r0
ijD

e
ij þ pwD

ð2Þ
kk ð10Þ

In the above expression j ¼ 4:2 J/cal is the mechanical equivalent of heat and Cm is the specific heat of the
mixture. Here we set

ðqCÞm ¼ ð1 � nÞqsCs þ nvwCw ð11Þ
with jqsCs and jqwCw being the volumetric heat capacities of the solid and aqueous constituent, respectively
(cf. Yu et al., 1999).

With these assumptions, the energy balance Eq. (2) becomes,

jðqCÞm

DðmÞh
Dt

¼ � oQk

oxk

þ D ð12Þ

where

D ¼ r0
ijD

p
ij ð13Þ
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corresponds only to the work dissipated by the deformation of the solid phase, since all dissipation in the
fluid phase has been neglected.

Finally, as far as the heat flow is concerned, we assume the validity of Fourier’s law

Qi ¼ �jkm

oh
oxi

ð14Þ

where km is the thermal conductivity of soil–water mixture

km ¼ ð1 � nÞks þ nkw ð15Þ

In the above expression ks and kw are the thermal conductivities of the soil constituents.
With Fourier’s law, Eq. (14), we obtain the following heat conduction equation

DðmÞh
Dt

¼ jmr2h þ 1

jðqCÞm

D ð16Þ

where

jm ¼ km

ðqCÞm

ð17Þ

is the coefficient of thermal diffusivity of the soil 2 with dimensions ½jm
 ¼ L2T�1. We recall that the heat
generation term is given by the dissipation function defined above through Eq. (13).

3. Steady shear of a long shear-band

We consider now the steady shear deformation of a ‘long’ band of water-saturated clayey material (e.g.
an ‘active’-fault gouge). We assume that the considered shear-band has the thickness d and that the various
mechanical fields do not vary along its ‘long’ x-direction; they may vary along the ‘short’, z-direction.
Under steady conditions momentum balance degenerates into static equilibrium, i.e. into constant shear
stress across the shear-band

orxz

oz
¼ 0 ) rxz ¼ sd ¼ const: ð18Þ

We assume in addition that the shear-band material is at a ‘critical state’, deforming thus isochorically.
With this assumption the components of the velocity vector inside the shear-band are

vð1Þx ¼ vðzÞ; vð1Þy ¼ vð1Þz ¼ 0 ð19Þ

For steady, isochoric shear deformation, mass balance together with Darcy’s law results into a constant
pore-pressure profile across the shear-band. This means that under steady conditions no flow is sustained
across the shear-band. With h ¼ hðzÞ and Eqs. (19) this means in turn that in the considered case all
convective terms in the material time derivative of the temperature field in Eq. (16) will vanish, and
DðmÞh=Dt ¼ oh=ot. Consequently under the given setting of steady (creeping) shear deformation the ad-
vection of heat by fluid into/out of the shear zone is null. Of course if steady creep breaks down, then,
within a dynamic setting, heat advection may become significant. This scenario will not be addressed here.

2 The index m denotes the solids–water mixture which makes-up a soil element.
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For the considered steady shearing deformation the heat Eq. (16) yields to,

jkm

d2h
dz2

þ D ¼ 0 ð20Þ

By neglecting elastic strains, the rate of mechanical work dissipated in heat is given by the work of the shear
stress on the rate of shear deformation

D ¼ rxzDp
xz þ rzxDp

zx � sd _cc; _cc ¼ ov
oz

ð21Þ

For soil-like materials, the steady-state shear stress (i.e. the ‘‘strength’’ of the gouge) is given formally by a
friction law

sd ¼ scs ¼ r0
nlcs ð22Þ

In this expression r0
n is the effective stress, acting normal to the shear-band. Since the pore-pressure is

constant, then for constant total normal stress we get that r0
n is also constant. Moreover in Eq. (22) lcs is the

friction coefficient of the gouge at critical state. We assume here that the material is frictionally thermo-
visco-plastic,

lcs ¼ l̂lð _cc; hÞ ð23Þ
In particular we assume here that the friction coefficient in the critical state is given by a strain-rate
hardening power-law and a thermal softening exponential law as follows:

lcs ¼ gð _ccÞ � f ðhÞ ¼ lref �
_cc
_ccref

 !N

e�Mðh�h1Þ ð24Þ

Accordingly the shear stress at critical state is given by a qualitatively similar expression as Newton’s law
Eq. (1)

scs ¼
r0
nlref

_ccref

� _cc
_ccref

 !N�1
0
@

1
Ae�Mðh�h1Þ _cc ð25Þ

The exponents M and N as well as the other model parameters appearing in the above empirical law must
always be determined experimentally, say in temperature and velocity controlled ring-shear experiments.
Strain-rate friction hardening is viewed here as the necessary counterbalancing effect to thermal softening.
We notice however that if the clay shows instead a frictional strain-rate softening effect (cf. for example
Tika and Hutchinson, 1999), then in the considered case (of thermal softening as well) no steady shear creep
solution for the shear-band is possible.

From Eqs. (22)–(24) we get,

sd ¼ srð _ccÞe�Mðh�h1Þ; sr ¼ sref

_cc
_ccref

 !N

; sref ¼ r0
nlref ð26Þ

_cc ¼ _ccref

sr

sref

� �1=N

¼ _cc0e
Mðh�h1Þ; _cc0 ¼

sd=r0
n

lref

� �1=N

_ccref ¼ const: ð27Þ

With this notation the dissipation is given in terms of the (constant) shear stress sd, the (constant) reference
shear strain-rate, _cc0, and in terms of an exponential function of the temperature

D � sd _cc ¼ D0e
Mðh�h1Þ; D0 ¼ sd _cc0 ð28Þ
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With this dissipation function, the governing Eq. (20) becomes,

jkm

d2h
dz2

þ D0e
Mðh�h1Þ ¼ 0 ð29Þ

According to Fig. 2, we study here the possibility that the temperature at the boundaries has a constant
value, equal to the ambient temperature

hð
d=2Þ ¼ hd ¼ const: ð30Þ
Eq. (28) is non-dimensionalized by introducing as new variables

z� ¼ z
d=2

; h� ¼ Mðh � h1Þ ð31Þ

This transformation is yielding to the following non-linear, ordinary differential equation,

d2h�

dz�2
þ beh� ¼ 0; z� 2 ½�1; 1
 ð32Þ

with a single dimensionless physical parameter, the Gruntfest number,

b ¼ M
N

sd _cc0

jkm

d
2

� �2

ð33Þ

The analytical solution of the governing differential Eq. (32) can be found in mathematical textbooks (e.g.
Kamke, 1977). This solution is given in terms of two integration constants, which according to Fig. 2 are
identified from the symmetry condition,

h�ð0Þ ¼ h�
max;

dh�

dz�

				
z�¼0

¼ 0 ð34Þ

Fig. 2. Steady shearing of a long shear-band: in a thermo-viscoplastic material high velocity gradients counterbalance high temper-

atures resulting to constant shear stress across the band.
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and the boundary condition

h�ð
1Þ ¼ h�
d ¼ const: ð35Þ

Accordingly the analytical solution of Eq. (32) becomes,

h� ¼ h�
d � 2 ln

cosh eh�max=2
ffiffiffiffiffiffiffiffi
b=2

p
z�

� 

cosh eh�max=2

ffiffiffiffiffiffiffiffi
b=2

p� 

0
@

1
A ð36Þ

With the solution, Eq. (36), the boundary condition (35) at z� ¼ 
1 yields

h�
max ¼ h�

d þ 2 ln cosh eh�max=2
ffiffiffiffiffiffiffiffi
b=2

p� 
� 

ð37Þ

Thus steady-shear is possible only if the above transcendental Eq. (37) for the maximum temperature h�
max

in the middle of the shear-band has a solution. This solution depends on the value of the temperature at the
shear-band boundary h�

d and on the value of the Gruntfest number b. Accordingly, before we proceed
further with the discussion of the transcendental Eq. (37), we must have an estimate of the Gruntfest
number b.

4. Material and system parameters estimation

According to Eq. (33), the Gruntfest number b combines the following information:

(a) The thermal conductivity of the soil km; ½jkm
 ¼ FL=ðGrad LTÞ.
(b) The ratio m ¼ M=N of the two hardening exponents; ½m
 ¼ 1=Grad.
(c) The shear-band (fault) thickness d; ½d
 ¼ L.
(d) The in situ shear stress sd; ½sd
 ¼ F=L2.
(d) The reference strain rate _cc0; ½ _cc0
 ¼ 1=T.

For estimating the thermal conductivity of the clay we used data provided by Yu et al. (1999). With
jm ¼ 5:96 � 10�7 m2/s, ðqwjCwÞ ¼ 4:18 � 106 J/(�Cm3), ðqsjCsÞ ¼ 2:856 � 106 J/(�Cm3) and n ¼ 0:33 taken
from this reference we get jkm ¼ 0:46 J/(�C m s). On the other hand, if we use the parameters that we se-
lected for analyzing the Vaiont landslide (Vardoulakis, 2002) we get jkm ¼ 0:42 J/(�C m s). We assume here
as a typical value, jkm ¼ 0:45 J/(�C m s).

In order to estimate the strain-rate sensitivity exponent N we resorted to experimental results concerning
a kaolin clay, reported by Leinenkugel (1976) (see Fig. 3), thus yielding N � 0:01.

For estimating the temperature sensitivity we used the data from Hicher (1974) (Fig. 4),

lcs ¼ tanð22:3�Þ _cc
_cc0

 !N

e�Mðh�22�CÞ; M � 0:0093 �C�1; _cc0 ¼ 1%=h ð38Þ

Thus from Figs. 3 and 4 we get that for a rate- and temperature sensitive kaolin clay, m � 1 �C�1. In the
present analysis the exponent ratio m ¼ M=N will be varied between m ¼ 1 �C�1 and m ¼ 0:1 �C�1, in order
to cover a possible range of behaviors between ‘strong’ and ‘weak’ thermal softening, respectively.

The shear-band thickness is also varied here between extremes, as d ¼ 0:1 and 0.0015 m. The lower
bound estimate for the shear-band thickness stems from an earlier publication by Morgenstern and
Tschalenko (1967), who documented the microscopic structure of shear-bands in kaolin specimens in direct
shear tests. According to this publication, whatever we assume for the equivalent shear-band thickness, we
conclude that this has to be in the order of few hundreds of microns, and suggest a factor of 200 between
particle size and shear-band thickness, dB � 200d50%. If we adopt this estimate with d50% ¼ 0:007 mm we end
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up here with an estimated shear-band thickness dB � 1:4 mm. The assumed upper bound is justified if we
assume that the active fault thickness is evolving with fault displacement (cf. Otsuki, 1978; Waterson, 1986;
and Drescher et al., 1990).

With these remarks we may re-write Eq. (33) as

b ¼ 1

4

d
dch

� �2

ð39Þ

with dch being a characteristic length of the problem, defined as

dch ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd

N
M

jkm

_cc0

�s
ð40Þ

We observe at this point that in most geologic settings the shear stress sd acting on a ‘active’ fault is related
to the depth href and to the dip angle d of the considered fault. As an example we indicate schematically in
Fig. 5 ‘Section 5’ of the Vaiont slide of October 9, 1963 after Hendron and Patton (1985). From such a
section we get a fair estimate of the shear stress sd � c0href tan d, acting on a gently dipping fault at relatively
shallow depths.

Summarizing the above discussion we conclude that the Gruntfest number b will vary inversely pro-
portional to the depth and dip of the fault, proportionally to the square of the shear-band thickness and
proportionally to the thermal softening exponent M ,

Fig. 3. Strain-rate sensitivity of remolded kaolin clay after Leinenkugel (1976) (sref ¼ 158 kPa, _ccref ¼ 2:8 � 10�6 s�1, N ¼ 0:01).

Fig. 4. Thermal friction softening of ‘black’ (kaolinite) clay: the variation of the critical friction coefficient with temperature, after

Hicher (1974).
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b / Md2

href tan d
ð41Þ

For the assumed range of variation for the exponent ratio m ¼ M=N , of the shear-band thickness d and for
a reference value for the in situ shear stress of sd ¼ 1 MPa we get that the Gruntfest number of the problem
is estimated as follows:

• for d ¼ 0:15 mm, m ¼ 1 �C�1: bmin � 10�7

• for d ¼ 0:1 m, m ¼ 0:1 �C�1: bmax � 10�3

Accordingly we will assume that b is a relatively small number as compared to unity.

5. Thermal run-away instability

For small values of the Gruntfest number b, the above transcendental Eq. (37) becomes

h�
d � h�

max þ
b
2

eh�max þ Oðb2Þ ¼ 0 ð42Þ

The solution of this equation is given in terms of the Lambert W0-function 3, which satisfies the following
functional relationship,

W ðxÞ expðW ðxÞÞ ¼ x ð43Þ

We notice that the Lambert W -function has an order two branch point at x ¼ �e�1. This means that
Lambert W ðxÞ is real-valued and monotonously increasing for x in the range ½�e�1;þ1
 and is denoted by
W0.

Fig. 5. Critical block failure-mechanism for ‘Section 5’ of the Vaiont slide of October 9, 1963 (cf. Hendron and Patton, 1985).

3 The notation hereafter follows the paper by Corless et al. (1996); cf. Barry et al. (2000) and Appendix A.
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Actually by setting

x ¼ b
2

eh�
d ð44Þ

and

h�
max ¼ h�

d � W0ð � xÞ ð45Þ
Eq. (42) reduces to the functional relationship (43),

W0ð�xÞ expðW0ð�xÞÞ ¼ �x ð46Þ
Thus the only analytic at zero solution of Eq. (42) is

h�
max ¼ h�

d � W0

�
� b

2
eh�

d

�
ð47Þ

According to Eq. (47) the critical (maximum) value for the dimensionless ambient temperature corresponds
to the branch point of the Lambert W -function; i.e. for

� b
2

eh�
d;cr ¼ �e�1 ) h�

d;cr ¼ ln
2

b

� �
� 1 ð48Þ

With

W0ð�e�1Þ ¼ �1 ð49Þ
From Eqs. (47) and (48) we get

h�
max;cr ¼ ln

2

b

� �
ð50Þ

Notice that the quality of the approximate analytical solution, Eqs. (48) and (50), holding for small values
of the Gruntfest number b, was tested numerically.

6. Remark

As pointed out to the author by the reviewer of this paper one may arrive directly to the above results,
Eqs. (48) and (50) by a simple geometric interpretation of Eq. (39) written as

b
2

eh�max ¼ h�
max � h�

d ð51Þ

Thus solving Eq. (51) is about finding the intercept of a straight line with an exponential. There might be
either two real solutions or none. Above analysis has shown that only one of these solutions is meaningful
and that the critical value for h�

d is that for which the two solutions coincide, i.e. for which the straight line is
tangent to the exponential. A necessary condition is that the derivatives of the right- and left-hand side of
the above equation coincide. Therefore we get

b
2

eh�max ¼ 1 ð52Þ

from which indeed Eqs. (50) and (48) follow directly.
It should be pointed out however that this elegant geometric interpretation does not really free us from

the use of the not so well-known Lambert W -function. This is the case when we want to compute the
temperature and velocity distributions inside the shear-band for values of the ambient temperature which
are less then the critical one (see next section).
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7. Numerical results and discussion

In Figs. 6 and 7 we show the temperature distribution and the corresponding velocity profile near the
critical condition Eq. (48) and for b ¼ 10�7 (hcr ¼ 37:8 �C). We remark that from Eq. (26) we get that shear
strain-rate in the shear-band is an exponential function of the dimensionless temperature

_cc ¼ _cc0e
h� ð53Þ

The velocity field is derived from this expression by simple numerical integration

Fig. 7. Velocity profile inside the shear-band near the critical condition (b ¼ 10�7, hcr ¼ 37:8 �C).

Fig. 6. Temperature profile inside the shear-band near the critical condition (b ¼ 10�7, hcr ¼ 37:8 �C).
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v� ¼ v
v0

¼
Z z�

0

expðh�ðfÞÞdf; v0 ¼
d
2
_cc0 ð54Þ

We observe that the boundary velocity increases exponentially with the ambient temperature, reaching
‘catastrophic’ values near the critical temperature (Fig. 8). This result means that above the critical tem-
perature hd;cr, steady (creeping) shear is not possible, and that the process must evolve dynamically. Thus
the present analysis has shown that, for thermally softening, visco-plastically hardening clays, catastrophic
shear events may be caused by an increase of the ambient temperature above the problem-specific critical
value hd;cr, given here in dimensionless form by Eq. (48).

Finally, as it can be seen from Fig. 9 the most critical parameter in the analysis is the thermal soften-
ing exponent M that sets the range of critical ambient temperatures. In other words this phenomenon is
expected to be critical for clays showing pronounced frictional thermal softening (M relatively large).

Fig. 8. Boundary velocity as function of ambient temperature (b ¼ 10�7, hcr ¼ 37:8 �C).

Fig. 9. Variation of the critical ambient temperature for thermal run-away with fault thickness and the exponent M , which determines

the sensitivity of the clay towards changes in temperature (frictional thermal softening).
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This result could have some bearing in the design of nuclear waste disposal facilities in fissured clayey
deposits.

Acknowledgements

The author wants to acknowledge the EU project: Fault, Fractures and fluids: Golf of Corinth, in the
framework of program energy (ENK6-2000-0056).

Appendix A

We are interested in the branch W �
0 of the Lambert function defined in the interval

�e�1
6 x6 0 : �16W �

0 6 0 ðA:1Þ

According to Barry et al. (2000) this branch is approximated as follows (Fig. 10)

e ¼ expð1Þ
g ¼ 2 þ 2ex

N2 ¼ 3
ffiffiffi
2

p
þ 6 �

ð2237 þ 1457
ffiffiffi
2

p
Þe � 4108

ffiffiffi
2

p
� 564

� �
g

ð215 þ 199
ffiffiffi
2

p
Þe � 430

ffiffiffi
2

p
� 796

N1 ¼ 1

�
� 1ffiffiffi

2
p
�
ðN2 þ

ffiffiffi
2

p
Þ

W �
0 ¼ �1 þ

ffiffiffi
g

p

1 þ N1
ffiffi
g

p

N2þ
ffiffi
g

p

ðA:2Þ

Fig. 10. The Lambert W �
0 -function, Eq. (A.2) after Barry et al. (2000).
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